Pipeline Exploration Robot

Regular inspection of pipelines is key factor in ensuring safe transport and finding pipe leakages or blockages for a wide variety of applications e.g. Oil and Gas transport. Using pipeline exploration robots to enter pipelines and carry out inspection work with HD cameras, greatly increases efficiency and quality of inspection. A pipeline exploration robot system includes a control station and a robot.

A control station (a single board computer or a PC) responsible for receiving, storing and displaying video signals sent by robots as well as controlling robots’ behavior by sending instructions.


Pipeline exploration robots are consists of a multimedia application processor, status and environment information, camera and a communication system. The application processors controls robots’ movements and operate the camera system based on the instructions sent by control station, while simultaneously sending robot status and encoded video signals back to control station. Pipeline exploration robots usually use wheels or caterpillar tracks as their moving system because gas/oil pipelines always have a large diameter. An individual moving system of this kind is equipped with multiple brushless motors to ensure the capability of overcoming obstacles. Status and environment information system is composed of a rotary encoder, an electronic compass, a 3 axis accelerometer and temperature & humility sensors. The system can provide general information about robots’ location, speed and inclination angle, temperature & humility data which are helpful for the operators to make decisions on robot behavior control. Camera system consists of motion control and video processing units, and usually coupled with ultrasonic sensor to detect the thickness status of pipeline. The motion control unit has a servo motor to adjust camera’s height and rotation so that all the areas in pipelines could be scanned by camera. The task of video signal processing is handled by imaging sensor and multimedia application processor which work together to implement video capture, signal conversion and encoding processes. In order to achieve better communication quality and longer distance, the encoded video and control signals are combined into a single signal by a FPGA included in communication system, and then processed by a serializer to produce LVDS (Low Voltage Differential Signal) to be transmitted through twisted-pair cables. If signals have to travel a much longer distance, fiber-optic cables could be a good option as it can cover distances up to several kilometers.

As the robotics technology develops, future pipeline exploration robots would feature more sophisticated A.I. (Artificial Intelligence), making them the capable of ‘thinking and working’ with minimum human intervention.


Hover over the diagram blocks to view recommended products for this solution:

High Performance Application Processor
Click for full parts list

Used for measuring speed
Click for full parts list

Used for measuring speed
Click for full parts list

Low G 3-axis accelerometer
Click for full parts list

3-axis compass sensor
Click for full parts list

Normal speed serializer
Click for full parts list

Normal speed serializer
Click for full parts list

Normal speed deserializer
Click for full parts list

Normal speed deserializer
Click for full parts list

High performance image sensor
Click for full parts list

Step motor driver
Click for full parts list

Produces 1-7 N-m torque required to drive the arm
Click for full parts list

High Performance FPGA
Click for full parts list

High Performance FPGA
Click for full parts list

Ultrasonic Sensor
Click for full parts list

Temp & Humidity Sensor
Click for full parts list

Twisted-Pair Cable
Click for full parts list

The low-cost Cyclone® II FPGA Starter Development Kit is ideal for evaluating Altera's high-performance, low-power, 90-nm technology.
Altium's 3000-series NanoBoard 12-400-NB3000AL-01 is an Altera variant, incorporating an Altera Cyclone III device (EP3C40F780C8N) as the user FPGA.
Altera's Cyclone III FPGA Development Kit combines the largest density low-cost, low-power FPGA available with a robust set of memories and user interfaces.
The Nios® II Embedded Evaluation Kit (NEEK), Cyclone® III Edition makes evaluating Altera's embedded solutions easier than ever.
The economical Cyclone III FPGA Starter Kit is easy to use and an ideal introduction if you have never designed with FPGAs before.
ImageManufacturer &
Part Number
NXP AccelerometerMMA7660FC : MMA7660FC, 3-Axis Orientation/Motion Detection Sensor (pdf)MMA7660Click here
NXP AccelerometerAN3839 : AN3839, MMA7660FC Board Mounting Guidelines (pdf)AN3839MMA7660Click here
NXP AccelerometerAN3923 : AN3923, MMA8450Q Design Checklist and Board Mounting Guidelines (pdf)AN3923MMA845xClick here
NXP AccelerometerAN4247 : Layout Recommendations for PCBs Using a Magnetometer Sensor (pdf)AN4247MMA845xClick here
ANALOG DEVICESAccelerometerAN-1078: ADXL346 Quick Start Guide  (pdf, 97 kB)AN-1078ADXL346Click here
ANALOG DEVICESAccelerometerAN-1077: ADXL345 Quick Start Guide  (pdf, 99 kB)AN-1077ADXL345Click here
ANALOG DEVICESAccelerometerAN-1063: Oversampling Technique to Improve ADXL345 Output Resolution  (pdf, 89 kB)AN-1063ADXL345Click here
ANALOG DEVICESAccelerometerAN-1057: Using an Accelerometer for Inclination Sensing  (pdf, 168 kB)AN-1057Click here
ANALOG DEVICESAccelerometerAN-1049: Calibrating iMEMS® Gyroscopes  (pdf, 78 kB)AN-1049Click here
ANALOG DEVICESAccelerometerAN-0989: Transitioning from ADXL202 to ADXL213 or ADXL203  (pdf, 76 kB)AN-0989ADXL202/ADXL213/ADXL203Click here
ANALOG DEVICESAccelerometerAN-1025: Utilization of the First In, First Out (FIFO) Buffer in Analog Devices, Inc. Digital Accelerometers  (pdf, 138 kB)AN-1025Click here
ANALOG DEVICESAccelerometerAN-1023: Fall Detection Application by Using 3-Axis Accelerometer ADXL345  (pdf, 166 kB)AN-1023ADXL345Click here
ANALOG DEVICESAccelerometerAN-942: Optimizing MEMS Gyroscope Performance with Digital Control  (pdf, 129 kB)AN-942Click here
ANALOG DEVICESAccelerometerAN-900: Enhancing the Performance of Pedometers Using a Single Accelerometer  (pdf, 208 kB)AN-900Click here
ANALOG DEVICESAccelerometerAN-918: Motionless Bandwidth Test for MEMS Sensors  (pdf, 71 kB)AN-918Click here
ANALOG DEVICESAccelerometerAN-688: Phase and Frequency Response of iMEMS® Accelerometers and Gyros  (pdf, 135 kB)AN-688Click here
ANALOG DEVICESAccelerometerAN-604: Using the ADXL202 Duty Cycle Output  (pdf, 529 kB)AN-604ADXL202Click here
ANALOG DEVICESAccelerometerAN-603: A Compact Algorithm Using the ADXL213 Duty Cycle Output  (pdf, 176 kB)AN-603ADXL213Click here
ANALOG DEVICESAccelerometerAN-602: Using the ADXL202 in Pedometer and Personal Navigation Applications  (pdf, 81 kB)AN-602ADXL202Click here
ANALOG DEVICESAccelerometerAN-600: Embedding Temperature Information in the ADXL202's PWM Outputs  (pdf, 81 kB)AN-600ADXL202Click here
NXPProcessor3D Graphics on the ADS512101 Board Using OpenGL ESAN3793 MPC5121EClick here
NXPProcessore300 Power Architecture Core Family Reference ManualMPC5121EClick here
NXPProcessorNAND Flash Boot for the NXP MPC5121eAN3845 MPC5121EClick here
TEXAS INSTRUMENTS ProcessorBooting and Flashing via the DaVinci TMS320DM644x Serial InterfaceTMS320DM644xClick here
TEXAS INSTRUMENTS ProcessorCreating a TMS320DM6446 Audio Encode Example Using XDC Tools TMS320DM6446Click here
TEXAS INSTRUMENTS ProcessorOMAP35x 2D/3D Graphics Accelerator (SGX) Reference Guide-TRM Ch 13 OMAP35xClick here
ManufacturerProduct TypeAN TitleAN NumberPart NumberURL
ANALOG DEVICESAccelerometerThe Five Motion Senses: Using MEMS Inertial Sensing to Transform ApplicationsClick here
TEXAS INSTRUMENTSProcessorAn Overview of TI's Digital Video Software Development KitClick here
TEXAS INSTRUMENTSProcessorDesign Considerations When Choosing an OS for ARM Based MPU's Click here
TEXAS INSTRUMENTSProcessorPower Management Techniques for OMAP35x Applications Processors White PaperClick here
TEXAS INSTRUMENTS ProcessorIntroduction to Graphics Software Development for OMAP 2/3 - White Paper Click here
TEXAS INSTRUMENTS ProcessorProgramming Details of Codec Engine for DaVinci Technology Whitepaper Click here
TEXAS INSTRUMENTS ProcessorReaping the Benefits of SoC Processors for Video Applications White PaperClick here
ManufacturerProduct TypeWhite Paper TitleURL
ANALOG DEVICEAccelerometerADIS16210 Evaluation ToolADIS16210CMLZADIS16210Click here
ANALOG DEVICEAccelerometerADIS1636x Evaluation Tool ADIS16362BMLZADIS16362BClick here
ANALOG DEVICEAccelerometerThree-Axis Accelerometer Evaluation BoardEVAL-ADXL325Z ADXL325Click here
ANALOG DEVICEAccelerometerThree-Axis Accelerometer Evaluation Board EVAL-ADXL327ZADXL327Click here
ANALOG DEVICEAccelerometerADXL330Z Evaluation Board EVAL-ADXL330ZADXL330Click here
NXP Accelerometer3-Axis Analog Output Accelerometer Evaluation KitsKIT3376MMA7361LC MMA7361Click here
NXP AccelerometerSensor Toolbox for MMA8450 Accelerometer RD3924MMA8450Q MMA8450Click here
NXP AccelerometerSensor Toolbox Accelerometer board for MMA845X RDMMA845XMMA845XClick here
NXPProcessorI.MX51 Evaluation Kit(EVK)MCIMX51EVKJIMX51Click here
NXPProcessorI.MX51EVK Expansion CardMCIMX51EXPIMX51Click here
NXPProcessorI.MX51EVK LCD ModuleMCIMX51LCDIMX51Click here
TEXAS INSTRUMENTSProcessorOMAP35x Evaluation Module (EVM)TMDSEVM3530XOMAP3530Click here
ManufacturerProduct TypeEvaluation Kits TitleEVKs Part NumberPart NumberURL
ANALOG DEVICESAccelerometerLow g iMEMS® AccelerometersClick here
AustriamicrosystemsEncoderProgrammable Magnetic Rotary Encoders Click here
NXP AccelerometerLow-g Accelerometers Part 1 – Basic Knowledge of Accelerometers Click here
NXP AccelerometerLow-g Accelerometers Part 2 – Accelerometer Products and Applications Click here
OPTEK TECHNOLOGY EncoderOptical EncodersClick here
ManufacturerProduct TypeTraining TitlePart NumberURL